If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t^2+80t-90=0
a = 40; b = 80; c = -90;
Δ = b2-4ac
Δ = 802-4·40·(-90)
Δ = 20800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20800}=\sqrt{1600*13}=\sqrt{1600}*\sqrt{13}=40\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-40\sqrt{13}}{2*40}=\frac{-80-40\sqrt{13}}{80} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+40\sqrt{13}}{2*40}=\frac{-80+40\sqrt{13}}{80} $
| 4/y13=14 | | 12-3s=9s-12 | | 4+20x=100 | | 5j+2/3=1/2=18 | | 3.6*x=1 | | x=-10^2+12x+8 | | x=-10x2+12x+8 | | 3x(33)+10=180 | | 1200-5(3x30)=600 | | 1.200-5(3x30+30)=600 | | x+100=2x+3 | | 468+17=26x | | 2+6x=(6x+4)-2 | | -2a=-8=4a | | 1/4(8w-12)=2w-3 | | 16(6t+-3)=200 | | 8=2a=a4 | | 7.5-4u=1.1 | | 131070=n^2+n | | 36=u/2+15 | | 0.3x+3=5.7 | | 13n-7(-2+n)=4n-10 | | (2x+16)=(6x-8) | | (x+20)=(x+16) | | (4x-8)=(3x+18) | | (x+27)=(2x+20) | | F(x-1)=3x^2+3x-4 | | 1/6x-4=x-10 | | 3+2(4x-3)=3x+22 | | -x+1=4x | | 6x-23=360 | | 1/3x^2-4x+1=-2 |